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Circuit Testing

Given a circuit n qubits, how hard is it to tell what it does?
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Finding a matrix representation requires space exponential in n.

What questions can we hope to answer using more modest resources?

This talk: a simpliÞed problem that remains QMA-hard, which places an 
upper bound on what you can expect to do efÞciently.
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SimpliÞed Circuit Testing

Given an circuit C, does it behave like circuit C0 on a large subspace of 
inputs, or does it behave like C1 on all input states?
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C ! C0 C ! C1

! C0 and C1 are known in advance: the algorithm can be based on them.

! This problem is QMA-hard for any C0 and C1 (not too close together)

! This generalizes previous circuit hardness results [JWB05, R10]



Outline of Talk
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QMA

QMA is the set of all promise problems P = (Pyes, Pno) for 
which there exist efÞcient quantum circuits V such that:
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!  if              then         s.t. outcome is      with Pr
!  if              then         the outcome is      with Pr

x ! Pyes !| ! " |1!
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A problem P is:
! QMA-hard if every problem in QMA reduces to it.
! QMA-complete if it is QMA-hard and also in QMA.
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Circuit Families and Notation

To use circuits as part of a problem deÞnition, we need a formalization 
that allows circuits of different sizes to be efÞciently generated.

In particular, given input and output spaces
! We must be able to construct a circuit acting on these spaces in time 

polynomial in the number of qubits used to represent
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Such a representation is given by a uniform family of (quantum) circuits.

We will make use of the following families of circuits
! The completely depolarizing channel:
! The identity channel:  



Distance Measures
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The trace norm provides a natural distance on quantum states.

Given one copy of a state in             , it can be identiÞed with probability{ ! 1, ! 2}
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The diamond norm provides a natural distance on quantum channels

Given one use of a channel in              , it can be identiÞed with prob.
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Circuit Testing Problem

Problem (                ):
Let                               and let           be uniform circuit families.
Input:  A circuit                             .  Let             s.t 

Yes: There exists a subspace S of     with                                 such 
that for any reference space     and any state  

No:                        , i.e. for any space     and state
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Informal Statement:
Given a circuit C, does it behave like C0 on a large subspace of the 
input, or does it behave like C1 everywhere?

C0, C1

C : �+(X ) ! �+(Y) Ci ! C i Ci : �+(X ) ! �+(Y)

X �K�P�TS ! (�K�P�TX )1! !

R
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! (C " IR )(�) # (C0 " IR )(�) ! [Y $ �

! C " C1 ! � # �

! (C " IR)(�) # (C1 " IR)(�)! [Y $ �

� � +(: � R)

R
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Well-deÞned Promise?

To have a well deÞned promise problem, we require                            , 
i.e. that no C is both close to C0 on a subspace and C1 everywhere.
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In particular, we require that C0 and C1 are not too close together.

X
�K�P�TT ! �K�P�TX !

Formally, these are the C0 and C1 for which there is no subspace T of         
with                           such that for any                       ! ! �+(�; " R )

! (C0 " IR )( ! ) # (C1 " IR )( ! ) ! �[�Y$ 2"

When          this is equivalent to ! = 1 ! C0 " C1 ! ! > 2!

CT

CTyes CTno



Hardness Result

Theorem:                 is QMA-hard for any constant 0 < !  ! 1, 0 < "  < 1, 
and any C0 and C1 for which the problem is well-deÞned.

The proof is via a reduction from an arbitrary problem P in QMA.
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Let V be the veriÞerÕs circuit for P on some input x.

C0, C1Let C0,C1 be the circuits from          that have the same input spaces.

We assume all these circuits use the same ancillary space by padding.



Proof Sketch (! = 1)

The goal is to build a circuit C that runs C0 on an input whenever V 
accepts x and runs C1 whenever V rejects.

The following instance of CT! ,1 is equivalent to the original instance x of P.
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The key idea is that since Vx accepts or rejects with high probability, the 
controlled-not is a Ògentle measurementÓ of the output qubit, and so this 
reduces the original QMA problem to CT! ,1.

Vx
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C1C0

Proof Sketch (! < 1)

To increase the size of the accepting subspace (i.e. reduce ! ), we pad the 
ÒinputÓ the the constructed circuit with an appropriate number of qubits.
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Formalized, this proves that that                  is QMA-hard for constant !  for 
any C0 and C1 for which the problem is well-deÞned.
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Using CT to prove QMA-hardness

This result leads to simple QMA-hardness proofs for circuit problems

In particular, determining if a circuit C has some property for all inputs or 
is far from having that property on some input is QMA-hard if

! There are efÞcient circuits (C0) that are far from the property on all 
inputs and efÞcient circuit (C1) that have the property on all inputs.

! The circuits C0 and C1 are not too close together.

Examples:
! Is a circuit not degradable?
! Does a circuit produce entangled states?
! Testing if a channel is not a convex combination of unitaries.
! Is a circuit close to or far from a Þxed circuit in the diamond norm?

This result does not help to show that a problem is in QMA.
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Non-identity Check
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Problem ((Mixed) Non-identity Check):
Let
Input:  A circuit
Yes:                             and there exists efÞcient unitary U such that

for some pure state 

No:

! � (0, 1)
C : �+(X ) ! �+(X )

�C � I�! � 2 � !

! C " I ! ! # !

! C(|! "#! |) $ U|! "#! |U! ! �[�Y% ",

! U|! "#! |U! $ | ! "#! |! �[�Y& 2 $ "

Does an input circuit implement something nontrivial? This problem is 
QMA-complete on unitary circuits [JWB05].

|! !

Hardness proof: CT! ,1,U,I is a special case, where U is any family of non-
identity circuits (i.e. the family that applies Pauli-X to the Þrst qubit).



Non-isometry Testing
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Problem (Non-isometry):
Let
Input:  A circuit
Yes: There exists              such that

No: For all

Is a circuit that includes measurements (approximately) reversible?       
This problem is QMA-complete [R10].

Hardness proof: CT! ,1,! ,I is a special case, where !  is the completely 
depolarizing channel.

� � (0, 1/2)
C : �+(X ) ! �+(Y)

|! ! " X

|! ! " X

! (! " IX )( |! #$! |) ! ! % "

! (! " IX )( |! #$! |) ! ! % 1 & "



Pure Fixed Points

18

Problem (Non-isometry):
Let
Input:  A circuit
Yes: There exists              such that

No: For all

Does a circuit C have a pure Þxed point?  I.e. is there some       for which 
we have                     ? 

Hardness proof: CT! ,1,I,!  is a special case.

|! ! " X

|! ! " X
C : �+(X ) ! �+(X )

! � (0, 1)

! C(|! "#! |) $ | ! "#! |! �[�Y% "

! C(|! "#! |) $ | ! "#! |! �[�Y% 2 $ "
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Symmetric Encryption

Alice and Bob share a classical key k of length m and Alice wants to 
(securely) send Bob a state on n qubits.

She has access to a circuit E but she does not understand it.  How hard is 
it to test that E can be safely used for encryption?
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! ! Ek (" ) ! ! Dk (" )

Such a system works if:

! There exists an efÞcient circuit D such that 

! When k is unknown, the output is random, i.e.

For such a system to be secure, we must have

! Dk " Ek # I ! ! $ !

!
!

k Ek /2 m " ! ! ! # !

m ! 2n



Detecting Insecure Encryption

Problem:
Let                              
Input:  A circuit 
Yes: There exists a subspace S of     with                                 such 
that for any reference space    , key k, and

No: E is secure, i.e.
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Weakening the requirements, can we ensure that E is not the identity on a 
large subspace (independent of the key)?

X �K�P�TS ! (�K�P�TX )1! !

R � � +(: � R)

� � (0, 1), � � (0, 1]
E : { 1, ... 2m} ! �+(X ) " �+(Y)

! (Ek " IR )( ! ) # ! ! �[�Y$ "

! ! " 1
2m

!
k!{ 0,1} m Ek ! " # !

This is QMA-hard, as this is              with a weakened promise, where    is 
any family of perfect encryption circuits.  QMA-completeness follows 
from a protocol involving the swap test.
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Discussion

The hardness of the circuit testing problem provides a tool to prove the 
QMA-hardness for a variety of circuit problems.
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Open Problems

! General tools for proving containment in QMA?

! Is the Pure Fixed Point problem in QMA?  The ÒobviousÓ veriÞer, who 
takes two copies, applies the swap test, applies C to one copy, and then 
does the swap test again does not work.  Consider the circuit C that 
measures and then applies Pauli-X with the proof state 

! More general results on the hardness of (simple) process tomography?

|01! + |10!


