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Circuit Testing

Given a circuit n qubits, how hard is it to tell what it does?
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Finding a matrix representation requires space exponential in.
What guestions can we hope to answer using more modest resources?

This talk: a simpliped problem that remains QMA-hard, which places an
upper bound on what you can expect to do efpbciently.
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SimpliPed Circult Testing

Given an circuit C, does it behave like circuit Co on a large subspace of
Inputs, or does it behave likeC; on all input states?

| Co and C; are known in advance: the algorithm can be based on them.
| This problem is QMA-hard for any Co and C; (not too close together)

| This generalizes previous circuit hardness results [JWBO05, R10]
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QOMA

QMA is the set of all promise problemsP = (Pyes, Pno) for
which there exist efbcient quantum circuitsV such that:
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| QMA-hard if every problem in QMA reduces to It. P

I QMA-complete if it iIs QMA-hard and also InQMA.



Circult Families and Notation

To use circuits as part of a problem debPnition, we need a formalization
that allows circuits of different sizes to be efbciently generated.

In particular, given input and output spacesH, K
' We must be able to construct a circuit acting on these spaces in time
polynomial in the number of qubits used to representH , K

Such a representation is given by a uniform family of (quantum) circuits.
We will make use of the following families of circuits

! The completely depolarizing channel: I( 1) = 1/ KPK
! The identity channel: | (1) = |



Distance Measures

The trace norm provides a natural distance on quantum states.

I XT = 1XI1 = X' X

Given one copy of a state in{! 1,! 2} , it can be identibed with probability
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The diamond norm provides a natural distance on quantum channels
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Given one use of a channel int! 1,! 2}, it can be identibed with prob.
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Circuit Testing Problem

Informal Statement:
Given a circuit C, does it behave like G on a large subspace of the
Input, or does It behave like G everywhere?

Problem (CT. 5 ¢, ¢, ):
Lete € (0,1),6 € (0,1] and let &, G be uniform circuit families.
Input: Acircuit C: +(X)! +(Y). LetG!C; stG: +#(X)! +(Y)

Yes:There exists a subspac&of X with KPS! (K PX)Y ' such
that for any reference spacd&k and any state € D(S ® R)

(C" R)P# (C" R)P)!, S €

No:! C" Ci! # ¢, l.e.forany spaceR and state

H(C" IR)(p)# (G IR)(p) S €



Well-debPned Promise?

To have a well debPned promise problem, we require * ;- *;uyw "
.e. that no C is both close to Co on a subspace andC: everywhere.

In particular, we require that Co and C; are not too close together.

Formally, these are theCop and C; for which there is no subspaceT of X
with KPT! KPX'suchthatforany! ! +(;"R )

(G IR)D)#(CL" IR)(M)! (v 2

When ! =1 this is equivalentto! G " Cy!, > 2!

CT
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Hardness Result

Theorem: *;, « ¢, ¢, IS QMA-hard for any constant0 <! 11, 0< " <1,
and any Co and C; for which the problem is well-dePned.

The proof is via a reduction from an arbitrary problemP in QMA.
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LetV be the veriberOs circuit fdP on some input x.
Let Co,C1 be the circuits from Gy, G that have the same input spaces.

We assume all these circuits use the same ancillary space by padding.
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Proof Sketch ( = 1)

The goal is to build a circuit C that runs Co on an input wheneverV
acceptsx and runs C; whenever V rejects.

The following instance of CT; 1 Is equivalent to the original instancex of P.
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The key idea Is that sinceVy accepts or rejects with high probabillity, the
controlled-not is a Ogentle measurementO of the output qubit, and so this
reduces the original QMA problem to CT, 1.
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Proof Sketch ( < 1)

To increase the size of the accepting subspace (i.e. redudeg, we pad the
OinputO the the constructed circuit with an appropriate number of qubits

T Co C1

0l =

0! l

O—

v

Formalized, this proves that that *;, « o, ¢, 1QMA-hard for constant! for
any Co and C; for which the problem is well-dePned.
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Using CT to prove QMA-hardness

This result leads to simple QMA-hardness proofs for circuit problems

In particular, determining if a circuit C has some property for all inputs or
Is far from having that property on some input is QMA-hard If
! There are efbcient circuits Co) that are far from the property on all
iInputs and efpbcient circuit Ci) that have the property on all inputs.
I The circuits Cp and C1 are not too close together.

Examples:
I Is a circuit not degradable?
! Does a circuit produce entangled states?
| Testing if a channel is not a convex combination of unitaries.
l'Is a circuit close to or far from a bxed circuit in the diamond norm?

This result doesnot help to show that a problem is in QMA.
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Non-identity Check

Does an input circuit implement something nontrivial? This problem is
QMA-complete on unitary circuits [JWBO5].

Problem ((Mixed) Non-identity Check):

Let! € (0,1)
Input: Acircuit C: #X)! +(X)
Yes:||C — ||, > 2—! and there exists efpbcient unitaryJ such that

for some pure statg! !
IC('"# DS Ul "# U o,
LUI! "# U $|! " | 2%

No: I C™ I, # !

Hardness proof. CT, 1y, IS a special case, wherdJ is any family of non-
identity circuits (i.e. the family that applies Pauli-X to the brst qubit).
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Non-isometry Testing

Is a circuit that includes measurements (approximately) reversible?
This problem is QMA-complete [R10].

Problem (Non-isometry):
Lete € (0,1/2)
Input: Acircuit C: +X)! +(Y)
Yes:There existg! | " X such that

OO ES D), %

No: Forall [! 1" X
I ES ), %l1&”

Hardness proof. CT, 1, | Is a special case, wherd Is the completely
depolarizing channel.
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Pure Fixed Points

Does a circuit C have a pure Pxed point? l.e. Is there somp !
we haveC(|! )" | !!?

Problem (Non-isometry):
Let! € (0,1)
Input: Acircuit C: #(X)! +(X)
Yes:There existg! | " X such that

IC(L" S| %"

No: Forall [! 1" X
C(P™ )S|!"# ! [ Q028"

Hardness proof. CT, 1, IS a special case.

for which
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Symmetric Encryption

Alice and Bob share a classical ke of length m and Alice wants to
(securely) send Bob a state on qubits.

She has access to a circulE but she does not understand it. How hard Is
it to test thatE can be safely used for encryption?

] E(") —— ] Dy (")

Such a system works If:

| There exists an efbcient circuit D such thatDy " Ex # 1, $ |

| When k is unknown, the output is random, i.e.! (E/2™" 'l #!

For such a system to be secure, we must hava ! 2n
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Detecting Insecure Encryption

Weakening the requirements, can we ensure that E Is not the identity on a
large subspace (independent of the key)?

Problem:
Lete € (0,1),6 € (0, 1]
Input: Acircuit E: {1,...2M}1  +X) " +(Y)
Yes:There exists a subspac&of X with K PS! (K PX)! ' such
that for any reference spaceR , kek, and p € D(S®R)

(Bc" IR)()# T B
No: Eis secure, i.e!! " 55 gqym Ex!» # !
This is QMA-hard, as this is *;, - | g with a weakened promise, wheres Is

any family of perfect encryption circuits. QMA-completeness follows

from a protocol involving the swap test.
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Discussion

The hardness of the circuit testing problem provides a tool to prove the
QMA-hardness for a variety of circuit problems.

Open Problems

| General tools for proving containment in QMA?

| Is the Pure Fixed Point problem in QMA? The OobviousO veriber, who
takes two copies, applies the swap test, applies C to one copy, and then
does the swap test again does not work. Consider the circuit C that
measures and then applies Pauli-X with the proof stat@®1! + |10!

| More general results on the hardness of (simple) process tomography?
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